PLL Click Board
PLL Click Board
The PLL Click Board™ is a frequency multiplier that uses the Phase-Locked Loop (PLL) techniques to provide a high-frequency clock output from a cheap, standard fundamental mode crystal oscillator. In addition to this, PLL Click Board™ also offers a choice between nine different multiplication factors, programmed via states of the two input pins. The output range of the PLL Click Board™ goes up to 160MHz.
Software Support
We provide a library for the PLL Click Board™ on our Libstock page, as well as a demo application (example), developed using MikroElektronika compilers and mikroSDK. The provided click library is mikroSDK standard compliant. The demo application can run on all the main MikroElektronika development boards.
Library Description
Initializes and defines I2C driver and driver functions which offer a choice of writing in registers and reading from the registers. The library also has the ability for light measurements. The library can measure Small, Medium, and Large IR light, White and Large White light and UV and Deep UV light, whose values can be 16-bit or 24-bit. The library also offers a choice between channels that the user wants to measure desired light. For more details check the documentation.
Key Functions
void pll_setClockOutput(uint8_t mode);
- Function for enabling and disabling of the clock output.
void pll_setPLL_3x();
- Function for multiplying of the clock 3 times.
void pll_setPLL_4x();
- Function for multiplying of the clock 4 times.
void pll_setPLL_5x();
- Function for multiplying of the clock 5 times.
void pll_setPLL_6x();
- Function for multiplying of the clock 6 times.
void pll_setPLL_8x();
- Function for multiplying of the clock 8 times.
Example Description
- System Initialization - Initializes CS pin, RST pin and AN pin as an output.
- Application Initialization - Initializes driver init and set mode chip as ACTIVE.
- Application Task - (code snippet):
- Every 2 seconds, the PLL increases the input clock in the order of x4, x5, x6, and x8.
- If you use PLL x4, x5, x6 or x8, set S0 (RST pin) and S1 (AN pin) as OUTPUT.
- If you use PLL x3.125 or x6.25, set S1 ( AN pin ) as INPUT and S0( RST pin ) as OUTPUT.
- If you use PLL x3 or x5.3125, set S0 ( RST pin ) as INPUT and S1 ( AN pin ) as OUTPUT.
For the test, the onboard crystal oscillator is used where the frequency of the input clock is fixed. Using ICK (PWM pin) as input, it allows continuous output frequency setting to be in a wide range.
void applicationTask() { pll_setPLL_4x(); Delay_ms( 2000 ); pll_setPLL_5x(); Delay_ms( 2000 ); pll_setPLL_6x(); Delay_ms( 2000 ); pll_setPLL_8x(); Delay_ms( 2000 ); }
The full application code, and ready to use projects can be found on our Libstock page.
Other mikroE Libraries used in the example:
- Conversions
- I2C
- UART
Additional Notes and Information
Depending on the development board you are using, you may need USB UART click, USB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.
MIKROSDK
The PLL Click Board™ is supported with mikroSDK - MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant click board demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
PLL Click Board
Frequently Asked Questions
Have a Question?
Be the first to ask a question about this.