UT-S 7-Seg R Click Board
UT-S 7-Seg R Click Board
The UT-S 7 Seg R Click Board™ uses two SMD ultra-thin DSM7UA20101 7-SEG LED displays, made with the patented technology that delivers a thickness of only 2.1 mm. These displays are driven by the MAX6969, a constant current LED integrated driver from Maxim Integrated, which uses the SPI serial interface for communication and delivers a steady and constant power source for the LED segments.
7-segment LED display is the most commonly used type of display to represent changing numerical values. The principle is very simple - seven LED segments are positioned in a certain shape and by turning specific segments on or off, the shape that resembles a specific number is lit. This method of displaying numbers was first used in the beginning of the 20th century, but after the invention of the LED in ‘70, it is the most commonly used method to display numbers. It utilizes a fairly simple and cheap design with the numbers clearly visible. Be it a clock on the nightstand, a billboard at the airport, a gauge on some machine, a panel on some instrument or a display on the pump at the gas station - the numbers will be always easy to see and read, even in the dark.
Software Support
We provide a library for the UT-S 7 Seg R Click Board™ on our LibStock page, as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Library Description
The library covers all the necessary functions for the UT-S 7 Seg R Click Board™ control.
Key functions
uts7segr_writeData
- Generic write function
uts7segr_writeNumDec
- Writes decimal number
uts7segr_writeNumHex
- Writes hexadecimal number
Example Description
The demo application is composed of three sections:
- System Initialization - Initialize GPIO pins and SPI module for communication with UT 7SEG click.
- Application Initialization - Driver Initialization and turning on the lights by setting PWM pin to logical 1.
- Application Task - Contains four sequences:
- The first sequence shows how to use generic write functions by providing minus and custom.
- The second sequence is a demonstration of the counter using the function for decimal numbers.
- The third sequence is a demonstration of the counter using the function for hexadecimal numbers.
- The fourth sequence is a demonstration of the counter using a function with dot option.
NOTE: Brightness can be adjusted using the MCUs PWM module. In that case, GPIO setup for PWM pin is not necessary.
void applicationTask() { uts7segr_writeData( _UTS7SEGR_MINUS, 0xFF ); counter = 0; while (counter < 3) { uts7segr_lightCtl( 0 ); Delay_ms( 200 ); uts7segr_lightCtl( 1 ); Delay_ms( 300 ); counter++; } counter = 0; while (counter < 100) { uts7segr_writeNumDec( counter ); Delay_ms(100); counter++; } counter = 0; while (counter < 0xFF) { uts7segr_writeNumHex( counter ); Delay_ms(100); counter++; } counter = 0; while (counter < 100) { uts7segr_writeNumDot( counter, _UTS7SEGR_DOT_L ); Delay_ms(100); counter++; } }
The full application code, and ready to use projects can be found on our LibStock page.
MIKROSDK
This click board is supported with mikroSDK, the MikroElektronika Software Development Kit. To download mikroSDK visit LibStock.
UT-S 7-Seg R Click Board
Frequently Asked Questions
Have a Question?
Be the first to ask a question about this.