Buck & Boost Click Board
Buck & Boost Click Board
The Buck & Boost Click Board™ is a compact add-on board that contains a configurable power management device. This board features the MIC7401, a highly-integrated power-management IC featuring five synchronous buck regulators, one boost regulator, and a high-speed I2C interface with an internal EEPROM memory from Microchip. The MIC7401 offers two distinct modes of operation (Standby and Normal) and includes a global enable pin to shut down the device for additional power savings. Some features of this Click Board™ like an energy-optimized solution, flexibility, and high-performance make it an excellent choice for portable handheld and infotainment applications.
The Buck & Boost Click is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click Board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.
Software Support
We provide a library for the Buck & Boost Click Board™ on our LibStock page, as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Library Description
The library covers all the necessary functions to control the Buck & Boost Click Board™. The library performs a standard I2C interface communication.
Key Functions
void buckandboost_device_enable ( uint8_t state )
- Enable device function.(uint8_t out_value )
- Set buck output voltage function.(buckandboost_status_t *s_data )
- Get status function.
Example Description
The application is composed of three sections :
- System Initialization - Initializes I2C and start to write log.
- Application Initialization - Initialization driver enables - I2C, enable and wake up device, set normal mode, set Buck current limit to 1.1 A and save configuration, also write log.
- Application Task - (code snippet) This is an example which demonstrates the use of the Buck & Boost Click Board™. The display status is updated every 5 seconds on USART terminal while the application cycles the various voltage values on all channel outputs one by one. Vout[1] - 1.8V, Vout[2] - 1.1V, Vout[3] - 1.8V, Vout[4] - 1.05V, Vout[5] - 1.25V and Vout[6] - 9V. All data logs write on USB uart changes for every 5 sec.
void application_task ( ) { check_status = buckandboost_set_buck_out_voltage ( BUCKANDBOOST_OUTPUT_CH_1, BUCKANDBOOST_BUCK_OUTPUT_VOLTAGE_1800mV ); Delay_ms( 10 ); if ( check_status == BUCKANDBOOST_STATUS_OK ) { mikrobus_logWrite( " Output Voltage 1 : 1.8V ", _LOG_LINE ); mikrobus_logWrite( "- - - - - - - - - - - - - - ", _LOG_LINE ); } buckandboost_send_cmd ( BUCKANDBOOST_CMD_SAVECONFIG ); buckandboost_get_status ( BUCKANDBOOST_OUTPUT_CH_1, &status_data ); display_status( ); Delay_ms( 2000 ); check_status = buckandboost_set_buck_out_voltage ( BUCKANDBOOST_OUTPUT_CH_2, BUCKANDBOOST_BUCK_OUTPUT_VOLTAGE_1100mV ); Delay_ms( 10 ); if ( check_status == BUCKANDBOOST_STATUS_OK ) { mikrobus_logWrite( " Output Voltage 2 : 1.1V ", _LOG_LINE ); mikrobus_logWrite( "- - - - - - - - - - - - - - ", _LOG_LINE ); } buckandboost_send_cmd ( BUCKANDBOOST_CMD_SAVECONFIG ); buckandboost_get_status ( BUCKANDBOOST_OUTPUT_CH_2, &status_data ); display_status( ); Delay_ms( 2000 ); check_status = buckandboost_set_buck_out_voltage ( BUCKANDBOOST_OUTPUT_CH_3, BUCKANDBOOST_BUCK_OUTPUT_VOLTAGE_1800mV ); Delay_ms( 10 ); if ( check_status == BUCKANDBOOST_STATUS_OK ) { mikrobus_logWrite( " Output Voltage 3 : 1.8V ", _LOG_LINE ); mikrobus_logWrite( "- - - - - - - - - - - - - - ", _LOG_LINE ); } buckandboost_get_status ( BUCKANDBOOST_OUTPUT_CH_3, &status_data ); display_status( ); Delay_ms( 2000 ); check_status = buckandboost_set_buck_out_voltage ( BUCKANDBOOST_OUTPUT_CH_4, BUCKANDBOOST_BUCK_OUTPUT_VOLTAGE_1050mV ); Delay_ms( 10 ); if ( check_status == BUCKANDBOOST_STATUS_OK ) { mikrobus_logWrite( " Output Voltage 4 : 1.05V ", _LOG_LINE ); mikrobus_logWrite( "- - - - - - - - - - - - - - ", _LOG_LINE ); } buckandboost_get_status ( BUCKANDBOOST_OUTPUT_CH_4, &status_data ); display_status( ); Delay_ms( 2000 ); check_status = buckandboost_set_buck_out_voltage ( BUCKANDBOOST_OUTPUT_CH_5, BUCKANDBOOST_BUCK_OUTPUT_VOLTAGE_1250mV ); Delay_ms( 10 ); if ( check_status == BUCKANDBOOST_STATUS_OK ) { mikrobus_logWrite( " Output Voltage 5 : 1.25V ", _LOG_LINE ); mikrobus_logWrite( "- - - - - - - - - - - - - - ", _LOG_LINE ); } buckandboost_get_status ( BUCKANDBOOST_OUTPUT_CH_5, &status_data ); display_status( ); Delay_ms( 2000 ); check_status = buckandboost_set_boost_out_voltage ( BUCKANDBOOST_BOOST_OUTPUT_VOLTAGE_9000mV ); Delay_ms( 10 ); if ( check_status == BUCKANDBOOST_STATUS_OK ) { mikrobus_logWrite( " Output Voltage 6 : 9.00V ", _LOG_LINE ); mikrobus_logWrite( "- - - - - - - - - - - - - - ", _LOG_LINE ); } buckandboost_get_status ( BUCKANDBOOST_OUTPUT_CH_6, &status_data ); display_status( ); Delay_ms( 2000 ); }
void display_status ( void )
- Display status.
The full application code, and ready to use projects can be found on our LibStock page.
Other mikroE Libraries used in the example:
- I2C
- UART
- Conversions
Additional Notes and Information
Depending on the development board you are using, you may need a USB UART click, USB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.
MIKROSDK
The Buck & Boost Click Board™ is supported with mikroSDK - MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
Buck & Boost Click Board
Frequently Asked Questions
Have a Question?
Be the first to ask a question about this.