3D Halle 9 Click Board
3D Halle 9 Click Board
Key Features
- Niedriger Stromverbrauch, werkseitig auf 1 % genaue Empfindlichkeit ±500 G, integrierter Temperatursensor, I2C-Schnittstelle mit wählbaren Slave-Adressen und mehr
- Basierend auf dem ALS31300 - 3D-linearer Hall-Effekt-Sensor zur Erkennung der Stärke eines Magnetfelds in allen drei Dimensionen (X-, Y- und Z-Achse) von Allegro Microsystems
- Kann für verschiedene Anwendungen verwendet werden, wie z. B. 3D-Sensorik für frontale lineare Bewegung, Slide-By-Positionssensorik und Drehwinkelmessung
- mikroBUS: I2C-Schnittstelle
Das 3D Hall 9 Click Board™ ist eine kompakte Zusatzplatine zum Erkennen der Stärke eines Magnetfelds in allen drei Dimensionen. Diese Platine verfügt über den ALS31300, einen 3D-linearen Hall-Effekt-Sensor mit digitalem Ausgang und erweitertem Energiesparmanagement von Allegro Microsystems. Der ALS31300 verfügt über eine I2C-Schnittstelle, sodass er einfach per MCU konfiguriert werden kann, wobei die Messdaten im digitalen 12-Bit-Format bereitgestellt werden, was dem in jeder X-, Y- und Z-Achse gemessenen Magnetfeld entspricht. Außerdem bietet es die Möglichkeit, verschiedene I2C-Slave-Adressen (16 eindeutige Adressen) einzustellen, indem die vom Benutzer gewünschten Widerstände eingesetzt werden. Das Energiemanagement des ALS31300 ist hochgradig konfigurierbar und ermöglicht eine Optimierung von Versorgungsstrom und Leistung auf Systemebene.
Das 3D Hall 9 Click Board™ eignet sich für verschiedene Anwendungen, wie etwa 3D-Erfassung für frontale lineare Bewegung, Slide-By-Positionserfassung und Drehwinkelmessungen.
How Does The 3D Hall 9 Click Board™ Work?
The 3D Hall 9 Click Board™ as its foundation uses the ALS31300, a 3D linear Hall-effect sensor used to detect the strength of a magnetic field in all three dimensions (X, Y, and Z axes) from Allegro Microsystems. The ALS31300 provides a 12-bit digital output value proportional to the magnetic field generally applied to any of the Hall elements, alongside a 12-bit temperature output representing the junction temperature of the IC. The quiescent output value (zero magnetic fields used) is at mid-scale. The ALS31300 comes with the factory-programmed sensitivity range of ±500G, suitable for 3D linear sensing or 2D angle sensing applications.
Power management on the ALS31300 is user-selectable and highly configurable, allowing for system-level optimization of current consumption and performance. It supports three different power modes: Active Mode, Sleep Mode, and Low-Power Duty Cycle Mode (LPDCM). The operating mode of the ALS31300 will be determined by the selected proper value of the 0x27 register. More information on the operational modes can be found in the attached datasheet.
The 3D Hall 9 Click Board™ communicates with MCU using the standard I2C 2-Wire interface to read data and configure settings, supporting Standard Mode operation with a clock frequency of 100kHz and Fast Mode up to 400kHz. It provides data in digital format of 12-bits corresponding to the magnetic field measured in each X, Y, and Z axes. The ALS31300 also requires a supply voltage of 3V to work regularly. Therefore, a small LDO regulator, NCP170 from ON Semiconductor, provides 3V out of mikroBUS™ 3V3 power rail. This Click board™ also uses the Enable pin labelled as EN and routed to the CS pin of the mikroBUS™ socket to optimize power consumption, used for its power ON/OFF purposes.
The ALS31300 provides the ability to set different I2C slave addresses (16 unique addresses) by populating the appropriate resistors (R8 and R6), thus forming a voltage divider with a voltage value that corresponds to the desired I2C address. It also possesses an additional interrupt signal, routed on the INT pin of the mikroBUS™ socket labelled as INT, which integrates detection and reporting of significant changes in an applied magnetic field (independently enabled or disabled for each of the three axes). An interrupt event is initiated when the applied magnetic field forces the ADC output to a value greater than or equal to the user-programmed threshold.
The 3D Hall 9 Click Board™ can be operated only with a 3.3V logic voltage level. The board must perform appropriate logic voltage level conversion before using MCUs with different logic levels. However, the Click board™ comes equipped with a library containing functions and an example code that can be used, as a reference, for further development.
SPECIFICATIONS
Type | Magnetic |
Applications | The 3D Hall 9 Click Board™ be used for various applications, such as 3D sensing for head-on linear motion, slide-by position sensing, and rotation angle measurements |
On-board modules | ALS31300 - 3D linear Hall-effect sensor used to detect the strength of a magnetic field in all three dimensions (X, Y, and Z axes) from Allegro Microsystems |
Key Features | Low power consumption, 1% accurate factory-trimmed sensitivity ±500 G, integrated temperature sensor, I2C interface with selectable slave addresses, and more |
Interface | I2C |
Compatibility | mikroBUS |
Click board size | S (28.6 x 25.4 mm) |
Input Voltage | 3.3V |
PINOUT DIAGRAM
This table shows how the pinout of the 3D Hall 9 Click Board™ corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Notes | Pin | Pin | Notes | ||||
---|---|---|---|---|---|---|---|
NC | 1 | AN | PWM | 16 | NC | ||
NC | 2 | RST | INT | 15 | INT | Interrupt | |
Enable | EN | 3 | CS | RX | 14 | NC | |
NC | 4 | SCK | TX | 13 | NC | ||
NC | 5 | MISO | SCL | 12 | SCL | I2C Clock | |
NC | 6 | MOSI | SDA | 11 | SDA | I2C Data | |
Power Supply | 3.3V | 7 | 3.3V | 5V | 10 | NC | |
Ground | GND | 8 | GND | GND | 9 | GND | Ground |
ONBOARD SETTINGS AND INDICATORS
Label | Name | Default | Description |
---|---|---|---|
LD1 | PWR | - | Power LED Indicator |
R6, R8 | R6, R8 | Unpopulated | I2C Address Selection Jumpers |
3D HALL 9 CLICK ELECTRICAL SPECIFICATIONS
Description | Min | Typ | Max | Unit |
---|---|---|---|---|
Supply Voltage | - | 3.3 | - | V |
Sensing Range | -500 | - | +500 | G |
Sensitivity | - | 4 | - | V |
Resolution | - | 12 | - | bit |
Operating Temperature Range | -40 | +25 | +85 | °:C |
Software Support
We provide a library for the 3D Hall 9 Click Board™ as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
The package can be downloaded/installed directly from NECTO Studio The package Manager (recommended), downloaded from our LibStock™ or found on Mikroe Github account.
Library Description
This library contains API for 3D Hall 9 Click driver.
Key functions
-
c3dhall9_write_register
This function writes a desired data to the selected register by using I2C serial interface. -
c3dhall9_read_register
This function reads a desired data from the selected register by using I2C serial interface. -
c3dhall9_read_data
This function reads new data which consists of X, Y, and Z axis values in Gauss, and temperature in Celsius. It also calculates the angles between all axes in Degrees based on the raw axes data read.
Example Description
This example demonstrates the use of the 3D Hall 9 Click Board™ by reading the magnetic flux density from 3 axes as well as the angles between axes and the sensor temperature.
void application_task ( void )
{
c3dhall9_data_t sensor_data;
if ( C3DHALL9_OK == c3dhall9_read_data ( &c3dhall9, &sensor_data ) )
{
log_printf( &logger, " X-axis: %.1f Gaussrn", sensor_data.x_axis );
log_printf( &logger, " Y-axis: %.1f Gaussrn", sensor_data.y_axis );
log_printf( &logger, " Z-axis: %.1f Gaussrn", sensor_data.z_axis );
log_printf( &logger, " Angle XY: %.1f Degreesrn", sensor_data.angle_xy );
log_printf( &logger, " Angle XZ: %.1f Degreesrn", sensor_data.angle_xz );
log_printf( &logger, " Angle YZ: %.1f Degreesrn", sensor_data.angle_yz );
log_printf( &logger, " Temperature: %.2f Celsiusrnn", sensor_data.temperature );
Delay_ms ( 300 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio The package Manager (recommended), downloaded from our LibStock™ or found on Mikroe Github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.3DHall9
Additional Notes and Information
Depending on the development board you are using, you may need a USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.
MIKROSDK
The 3D Hall 9 Click Board™ is supported with mikroSDK - MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
Software Support
We provide a library for the 3D Hall 9 Click Board™ as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
The package can be downloaded/installed directly from NECTO Studio The package Manager (recommended), downloaded from our LibStock™ or found on Mikroe Github account.
Library Description
This library contains API for 3D Hall 9 Click driver.
Key functions
-
c3dhall9_write_register
This function writes a desired data to the selected register by using I2C serial interface. -
c3dhall9_read_register
This function reads a desired data from the selected register by using I2C serial interface. -
c3dhall9_read_data
This function reads new data which consists of X, Y, and Z axis values in Gauss, and temperature in Celsius. It also calculates the angles between all axes in Degrees based on the raw axes data read.
Example Description
This example demonstrates the use of the 3D Hall 9 Click Board™ by reading the magnetic flux density from 3 axes as well as the angles between axes and the sensor temperature.
void application_task ( void )
{
c3dhall9_data_t sensor_data;
if ( C3DHALL9_OK == c3dhall9_read_data ( &c3dhall9, &sensor_data ) )
{
log_printf( &logger, " X-axis: %.1f Gaussrn", sensor_data.x_axis );
log_printf( &logger, " Y-axis: %.1f Gaussrn", sensor_data.y_axis );
log_printf( &logger, " Z-axis: %.1f Gaussrn", sensor_data.z_axis );
log_printf( &logger, " Angle XY: %.1f Degreesrn", sensor_data.angle_xy );
log_printf( &logger, " Angle XZ: %.1f Degreesrn", sensor_data.angle_xz );
log_printf( &logger, " Angle YZ: %.1f Degreesrn", sensor_data.angle_yz );
log_printf( &logger, " Temperature: %.2f Celsiusrnn", sensor_data.temperature );
Delay_ms ( 300 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio The package Manager (recommended), downloaded from our LibStock™ or found on Mikroe Github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.3DHall9
Additional Notes and Information
Depending on the development board you are using, you may need a USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.
MIKROSDK
The 3D Hall 9 Click Board™ is supported with mikroSDK - MikroElektronika Software Development Kit. To ensure proper operation of mikroSDK compliant Click board™ demo applications, mikroSDK should be downloaded from the LibStock and installed for the compiler you are using.
3D Halle 9 Click Board
Frequently Asked Questions
Have a Question?
Be the first to ask a question about this.