2x2 Tastenklick-Platine
2x2 Tastenklick-Platine
Overview
Entdecken Sie die Vielseitigkeit und Funktionalität des 2x2 Key Click Board™, einer hochmodernen Lösung für Ihre Tastaturanforderungen. Dieses innovative Board wurde für nahtlose Integration und zuverlässige Leistung entwickelt und eignet sich mit seinen erweiterten Funktionen und seinem intuitiven Design für eine breite Palette von Anwendungen.
Wenn Sie sich für das 2x2 Key Click Board™ entscheiden, eröffnen sich Ihnen unzählige Möglichkeiten. Egal, ob Sie Hobbyist oder Profi sind, diese vielseitige Tastaturlösung ist auf Ihre spezifischen Anforderungen zugeschnitten und erfüllt sie präzise und effizient.
- Erleben Sie nahtlose Multi-Key-Funktionalität mit dem 2x2 Key Click Board™, das für die mühelose Unterstützung mehrerer Tastendrücke entwickelt wurde.
- Profitieren Sie von verbesserter Haltbarkeit und Reaktionsfähigkeit dank der Entprellschaltung mit hochwertigen Komponenten führender Hersteller wie NXP und Texas Instruments.
Das 2x2 Key Click Board™ wurde für die Anpassung an verschiedene Stromversorgungskonfigurationen entwickelt und ist sowohl mit 3,3-V- als auch mit 5-V-Stromquellen kompatibel. Dies gewährleistet Flexibilität und Komfort bei Ihren Projekten.
Dank der unabhängigen Tastenlesefunktion bietet dieses Click Board™ verbesserte Kontrolle und Präzision, sodass Sie Ihre Tasteneingaben entsprechend Ihren spezifischen Anforderungen anpassen können.
Entdecken Sie die nahtlose Integration und beispiellose Leistung des 2x2 Key Click Board™, einer zuverlässigen und vielseitigen Lösung für alle Ihre Tastaturanforderungen. Bringen Sie Ihre Projekte auf ein neues Niveau mit dieser hochmodernen Tastaturlösung, die Innovation mit Zuverlässigkeit und Effizienz kombiniert.
Nutzen Sie die Zukunft der Tastaturtechnologie mit dem 2x2 Key Click Board™ – Ihr Tor zu nahtlosen Tasteneingabelösungen für eine Vielzahl von Anwendungen. Schöpfen Sie das Potenzial Ihrer Projekte mit diesem fortschrittlichen Click Board™ aus, das Präzision, Zuverlässigkeit und Flexibilität bei jedem Tastendruck verspricht.
DEBOUNCE CIRCUIT
In electronics, two metal components tend to bounce or create multiple signals when they are in contact with each other — like when you push a button — before they get to a stable state. You want a single contact to be recorded, but the microcontroller records this as if you pressed the button many times.
So debouncing is, as the name states, the removal of bounces or spikes of low and high voltages. Graphically speaking, you want a clean line, not spikes. A debounce circuit makes sure that there are no voltage changes on the output. Thanks to it, one button press is recorded as such.
INTERRUPT SERVICE ROUTINE
All four Schmitt-trigger outputs are connected to input pins of the logic OR gate 74HC32, whose output is directly connected to the INT pin on mikroBUS. This pin is used to signalize an interrupt to the MCU any time a button is pressed.
In this way, the MCU software can be implemented as a simple polling routine, without any delays programmed in the code (like it would be necessary if there wasn't a hardware debouncing circuit present).
Thanks to the INT pin you can easily program a common interrupt service routine, in order to detect when a button is pressed (the state of the button changes from low to high logic level).
SPECIFICATIONS
Type | Pushbutton/Switches |
Applications | Human machine interface applications |
On-board modules | 74HC32 quad 2-input OR gate from NXP and the SN74HC14 Hex Schmitt-Trigger Inverter from Texas Instruments |
Key Features | 74HC32 quad 2-input OR gate, SN74HC14 Hex Schmitt-Trigger Inverte |
Interface | GPIO |
Compatibility | mikroBUS |
Click board size | M (42.9 x 25.4 mm) |
Input Voltage | 3.3V or 5V |
ADDITIONAL INFORMATION
- J2 is the interrupt enable pin (by default it is in the enable status).
- J1 is the power selection pin.
PINOUT DIAGRAM
This table shows how the pinout on 2x2 Key click corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).
Notes | Pin | Pin | Notes | ||||
---|---|---|---|---|---|---|---|
When button T1 is pressed the pin is active | T1-OUT | 1 | AN | PWM | 16 | T4-OUT | When button T4 is pressed the pin is active |
When button T2 is pressed the pin is active | T2-OUT | 2 | RST | INT | 15 | TINT | Interrupt pin that notifies the MCU that a button is pressed |
When button T3 is pressed the pin is active | T3-OUT | 3 | CS | TX | 14 | NC | |
NC | 4 | SCK | RX | 13 | NC | ||
NC | 5 | MISO | SCL | 12 | NC | ||
NC | 6 | MOSI | SDA | 11 | NC | ||
Power supply | +3.3V | 7 | 3.3V | 5V | 10 | +5V | Power supply |
Ground | GND | 8 | GND | GND | 9 | GND | Ground |
The demo initialises the TFT display and sets pins to operate in input direction. The main function of the demo uses the polling method to check if inputs are on an active level. The TFT display shows the button state according to detect level.
1 void main() 2 { 3 system_init(); 4 5 Draw_Taster(X1, Y1, RELEASED, "T1"); 6 Draw_Taster(X2, Y1, RELEASED, "T2"); 7 Draw_Taster(X1, Y2, RELEASED, "T3"); 8 Draw_Taster(X2, Y2, RELEASED, "T4"); 9 10 while(1) 11 { 12 if(Taster_Pressed(TAST1, &t1_state)) 13 Draw_Taster(X1, Y1, PRESSED, "T1"); 14 15 if(Taster_Released(TAST1, &t1_state)) 16 Draw_Taster(X1, Y1, RELEASED, "T1"); 17 18 if(Taster_Pressed(TAST2, &t2_state)) 19 Draw_Taster(X2, Y1, PRESSED, "T2"); 20 21 if(Taster_Released(TAST2, &t2_state)) 22 Draw_Taster(X2, Y1, RELEASED, "T2"); 23 24 if(Taster_Pressed(TAST3, &t3_state)) 25 Draw_Taster(X1, Y2, PRESSED, "T3"); 26 27 if(Taster_Released(TAST3, &t3_state)) 28 Draw_Taster(X1, Y2, RELEASED, "T3"); 29 30 if(Taster_Pressed(TAST4, &t4_state)) 31 Draw_Taster(X2, Y2, PRESSED, "T4"); 32 33 if(Taster_Released(TAST4, &t4_state)) 34 Draw_Taster(X2, Y2, RELEASED, "T4"); 35 36 t1_state = TAST1; 37 t2_state = TAST2; 38 t3_state = TAST3; 39 t4_state = TAST4; 40 41 Delay_ms(POLLING_PERIOD); 42 } 43 }
Frequently Asked Questions
Have a Question?
Be the first to ask a question about this.