Zu Produktinformationen springen
1 von 4

Mikroelektronika d.o.o.

Altitude 3 Click Board™

Altitude 3 Click Board™

SKU: MIKROE-3328
Normaler Preis
£12.60 GBP ohne MwSt
Normaler Preis £18.00 GBP Verkaufspreis
£12.60 GBP ohne MwSt
Sale Ausverkauft
Versand wird beim Checkout berechnet
If no stock shown above, check availability
Vollständige Details anzeigen
} ] }

Overview

Das Altitude 3 Click Board™ ermöglicht hochauflösende barometrische Druckmessungen durch Verwendung des ICP-10100, eines integrierten barometrischen Druck- und Temperatursensors. Basierend auf der fortschrittlichen kapazitiven MEMS-Sensortechnologie bietet es Genauigkeit und thermische Stabilität auf Industrieniveau. Eine sehr hohe absolute Druckgenauigkeit von bis zu ±1 Pa ermöglicht es dem Altitude 3 Click Board™, sehr kleine Höhenänderungen im Bereich von etwa 10 cm zu erfassen. Der Temperatursensor bietet eine Genauigkeit von bis zu ±0,4 °C im Bereich von -40 °C bis 85 °C. Der geringe Stromverbrauch macht es zur perfekten Wahl für verschiedene batteriebetriebene Anwendungen

Features such as very high accuracy, low power consumption, temperature stability, water resistance, and more, make Altitude 3 Click Board™ a perfect choice for the development of barometric pressure sensing applications for sports activity identification, mobile indoor/outdoor navigation, altitude-hold and stabilization in drones, and other similar applications that can benefit from the very precise barometric pressure sensor.

How Does The Altitude 3 Click Board™ Work?

The barometric pressure sensor IC used on the Altitude 3 Click Board™ is the ICP-10100, a high accuracy, low power, waterproof barometric pressure and temperature sensor IC, from TDK Corporation. The sensor is manufactured using the ultra-low noise MEMS (Micro Electro Mechanical System) capacitive technology, optimized for precise altitude measurements. It can detect pressure differences with the accuracy of ±1 Pa, which translates to an altitude resolution of less than 10cm. This makes this sensor very usable in drone applications development, allowing it to hover at a fixed altitude, or to be used as the stabilization control. Also, this sensor has a very low temperature offset of only ±0.5 Pa/°C, within the range from 25°C to 45°C.

MikroE Sensors Altitude 3 click

Each sensor IC is factory calibrated and the calibration parameters are stored within the OTP memory. To convert the readings into temperature and pressure values, these coefficients need to be used. The datasheet of the ICP-10100 offers formulas for these calculations. However, the Altitude 3 Click Board™ comes with a library that contains functions that encapsulate these calculations, which greatly accelerates application development.

Being packaged in a waterproof casing, the ICP-10100 sensor allows it to be used under 1.5m of water for the duration of 30 minutes. However, since the Click board™ itself is not waterproof, the sensor still offers good resistance against increased humidity and moisture. The ICP-10100 sensor offers the best performance when operated within the normal pressure and temperature conditions within the range from 0°C to 45°C, and from 95 kPa to 105 kPa.

The ICP-10100 can be operated in four different modes, allowing its performance to be tailored according to specific requirements. These modes allow a compromise between high precision, low noise, output speed, and power consumption. These modes include Low Power mode (LP), Normal mode (N), Low Noise mode (LN) and Ultra-Low-Noise mode (ULN). The datasheet of the ICP-10100 contains a table that displays the conversion time, current consumption, and pressure measurement noise for each of these modes, allowing the optimal mode to be chosen.

The Altitude 3 Click Board™ uses the I2C protocol to communicate with the host MCU. It contains two pull-up resistors for each of the I2C lines. The ICP-10100 is operated with only 1.8V. To provide this voltage, an additional IC had to be used. The BH18PB1WHFVCT is a small LDO regulator, providing the required voltage for the ICP-10100. Both I2C lines of the pressure sensor IC are pulled up to a 3.3V power rail though, allowing it to be operated by most MCUs that typically use 3.3V logic voltage levels. Please note that the Click board™ supports only 3.3V MCUs and it is not intended to be controlled with MCUs that use 5V without a proper level shifting circuitry.

SPECIFICATIONS

Type Altitude,Pressure
Applications The Altitude 3 Click Board™ is a perfect choice for the development of barometric pressure sensing applications for sports activity identification, mobile indoor/outdoor navigation, altitude-hold in drones, and other similar applications that can benefit from a precise barometric pressure sensor
On-board modules ICP-10100, a high accuracy, low power, waterproof barometric pressure and temperature sensor IC, from TDK corporation
Key Features Low power consumption, high measurement accuracy, factory calibrated compensation coefficients, high repeatability of the measurement data, water and moisture resistance, and more
Interface I2C
Compatibility mikroBUS
Click board size M (42.9 x 25.4 mm)
Input Voltage 3.3V

PINOUT DIAGRAM

This table shows how the pinout of the Altitude 3 Click Board™ corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).

Notes Pin Mikrobus logo.png Pin Notes
NC 1 AN PWM 16 NC
NC 2 RST INT 15 NC
NC 3 CS RX 14 NC
NC 4 SCK TX 13 NC
NC 5 MISO SCL 12 SCL I2C Clock
NC 6 MOSI SDA 11 SDA I2C Data
Power Supply +3V3 7 3.3V 5V 10 NC
Ground GND 8 GND GND 9 GND Ground

ALTITUDE 3 CLICK ELECTRICAL SPECIFICATIONS

Description Min Typ Max Unit
Pressure range (extended/maximum) 30 (25) - 110 (115) kPa
Pressure measurement resolution - 0.01 Pa
Absolute pressure accuracy (normal/extended range) -1 (-1.5) - 1 (1.5) Pa
Temperature range -40 - 85 ˚C
Temperature accuracy -0.4 - 0.4 ˚C

ONBOARD SETTINGS AND INDICATORS

Label Name Default  Description
LD1 PWR - Power LED indicator

 

Frequently Asked Questions

Have a Question?

Be the first to ask a question about this.

Ask a Question

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)