Proximity 13 Click Board™

MIKROE-3991
Regular price
£11.20
Sale price
£11.20
Regular price
£16.00
Sold out
Unit price
Quantity must be 1 or more

How Does The Proximity 13 Click Board™ Work?

The Proximity 13 Click Board™ features touchless sensor IC that includes dual 23-bit analog-to-digital converters, an integrated high-sensitivity array of visible and infrared photodiodes, a digital signal processor, and three integrated LED drivers with programmable drive levels. The photodiode response and associated digital conversion circuitry provide excellent immunity to artificial light flicker noise and natural light flutter noise.

By default, the measurement parameters are optimized for indoor ambient light levels, where it is possible to detect low light levels. For operation under direct sunlight, the ADC can be programmed to operate in a high signal operation so that it is possible to measure direct sunlight without overflowing.

The Proximity 13 Click Board™ is capable of measuring visible and infrared light. However, the visible photodiode is also influenced by infrared light. The measurement of illuminance requires the same spectral response as the human eye. If an accurate lux measurement is desired, the extra IR response of the visible-light photodiode must be compensated. Therefore, to allow the host to make corrections to the infrared light's influence, SI1153-AB09-GMR reports the infrared light measurement on a separate channel. The separate visible and IR photodiodes lend themselves to a variety of algorithmic solutions. The host can then take these two measurements and run an algorithm to derive an equivalent lux level as perceived by a human eye. Having the IR correction algorithm running in the host allows for the most flexibility in adjusting for system-dependent variables. For example, if the glass used in the system blocks visible light more than infrared light, the IR correction needs to be adjusted.

Over distances of less than 50 cm, the dual-port active reflection proximity detector has significant advantages over single-port, motion-based infrared systems, which are only good for triggered events. Motion-based infrared detectors identify objects within proximity, but only if they are moving. Single-port motion-based infrared systems are ambiguous about stationary objects even if they are within the proximity field. The Proximity 13 click can reliably detect an object entering or exiting a specified proximity field, even if the object is not moving or is moving very slowly. However, beyond about 30–50 cm, even with good optical isolation, single-port signal processing may be required due to static reflections from nearby objects, such as tables, walls, etc. If motion detection is acceptable, the SI1153-AB09-GMR can achieve ranges of up to 50 cm, through a single product window.

Since the three infrared LEDs are placed in an L-shaped configuration, it is possible to triangulate an object within the three-dimensional proximity field. Thus, a touchless user interface can be implemented with the aid of host software.

SPECIFICATIONS

Type Proximity
Applications Wearables, Handsets, Display backlight control, Consumer electronics
On-board modules SI1153-AB09-GMR
Key Features Proximity detector, three independet LED drivers, operates in direct sunlight with on die 940 nm pasband filter, internal and external wake support
Interface GPIO,I2C
Compatibility mikroBUS
Click board size S (28.6 x 25.4 mm)
Input Voltage 3.3V

PINOUT DIAGRAM

This table shows how the pinout of the Proximity 13 Click Board™ corresponds to the pinout on the mikroBUS™ socket (the latter shown in the two middle columns).

Notes Pin Pin Notes
NC 1 AN PWM 16 NC
NC 2 RST INT 15 INT Interrupt
NC 3 CS RX 14 NC
NC 4 SCK TX 13 NC
NC 5 MISO SCL 12 SCL I2C Clock
NC 6 MOSI SDA 11 SDA I2C Data
Power Supply 3.3V 7 3.3V 5V 10 +5V Power supply
Ground GND 8 GND GND 9 GND Ground

ONBOARD SETTINGS AND INDICATORS

Label Name Default Description
PWR LED GREEN - Power LED Indicator
IR1, IR2, IR3 IR LED - Infrared LED

Go to full site